11,930 research outputs found

    Azimuthal Correlations in p-p collisions

    Full text link
    We report the analysis of experimental azimuthal correlations measured by STAR in p-p collisions at sNN\sqrt{s_{NN}} = 200 GeV. We conclude that for a fit of data using Pythia event generator we need to include two values of kTk_{T}.Comment: 4 page, 3 figures. Prepared for X Mexican Workshop on Particles and Fields. Morelia Mich. Nov 7-12, 200

    Transport in random quantum dot superlattices

    Get PDF
    We present a novel model to calculate single-electron states in random quantum dot superlattices made of wide-gap semiconductors. The source of disorder comes from the random arrangement of the quantum dots (configurational disorder) as well as spatial inhomogeneities of their shape (morphological disorder). Both types of disorder break translational symmetry and prevent the formation of minibands, as occurs in regimented arrays of quantum dots. The model correctly describes channel mixing and broadening of allowed energy bands due to elastic scattering by disorder

    Corrections to the SU(3)×SU(3){\bf SU(3)\times SU(3)} Gell-Mann-Oakes-Renner relation and chiral couplings L8rL^r_8 and H2rH^r_2

    Get PDF
    Next to leading order corrections to the SU(3)×SU(3)SU(3) \times SU(3) Gell-Mann-Oakes-Renner relation (GMOR) are obtained using weighted QCD Finite Energy Sum Rules (FESR) involving the pseudoscalar current correlator. Two types of integration kernels in the FESR are used to suppress the contribution of the kaon radial excitations to the hadronic spectral function, one with local and the other with global constraints. The result for the pseudoscalar current correlator at zero momentum is ψ5(0)=(2.8±0.3)×103GeV4\psi_5(0) = (2.8 \pm 0.3) \times 10^{-3} GeV^{4}, leading to the chiral corrections to GMOR: δK=(55±5)\delta_K = (55 \pm 5)%. The resulting uncertainties are mostly due to variations in the upper limit of integration in the FESR, within the stability regions, and to a much lesser extent due to the uncertainties in the strong coupling and the strange quark mass. Higher order quark mass corrections, vacuum condensates, and the hadronic resonance sector play a negligible role in this determination. These results confirm an independent determination from chiral perturbation theory giving also very large corrections, i.e. roughly an order of magnitude larger than the corresponding corrections in chiral SU(2)×SU(2)SU(2) \times SU(2). Combining these results with our previous determination of the corrections to GMOR in chiral SU(2)×SU(2)SU(2) \times SU(2), δπ\delta_\pi, we are able to determine two low energy constants of chiral perturbation theory, i.e. L8r=(1.0±0.3)×103L^r_8 = (1.0 \pm 0.3) \times 10^{-3}, and H2r=(4.7±0.6)×103H^r_2 = - (4.7 \pm 0.6) \times 10^{-3}, both at the scale of the ρ\rho-meson mass.Comment: Revised version with minor correction

    Electron states in a one-dimensional random binary alloy

    Full text link
    We present a model for alloys of compound semiconductors by introducing a one-dimensional binary random system where impurities are placed in one sublattice while host atoms lie on the other sublattice. The source of disorder is the stochastic fluctuation of the impurity energy from site to site. Although the system is one-dimensional and random, we demonstrate analytical and numerically the existence of extended states in the neighborhood of a given resonant energy, which match that of the host atoms.Comment: 11 pages, REVTeX, 3 PostScript figure
    corecore